How to Graph \(y = a \csc (bx - c) + d \) and \(y = a \sec (bx - c) + d \)

1. Write the guide function. For \(y = a \csc (bx - c) + d \) the guide function is \(y = a \sin (bx - c) + d \) and for \(y = a \sec (bx - c) + d \) the guide function is \(y = a \cos (bx - c) + d \).

2. Identify a, b, c, and d.

3a. Find the amplitude of the guide function: \(\text{amp} = |a| \). \textbf{Note:} Cosecant and secant do not have amplitude.

b. Determine if there has been an x-axis reflection: if a is negative, there has been an x-axis reflection.

4a. Find the period: \(\text{period} = \frac{2\pi}{b} \).

b. Find the x-increment: \(\text{x-increment} = \frac{1}{4} \cdot \text{period} \).

5. Find the phase shift by setting the argument, \(bx - c \), equal to zero and solving for \(x \):
\[\text{P.S.} = \begin{cases} \frac{c}{b} \text{ right} & \text{if we see } bx - c \text{ and } \frac{c}{b} \text{ is positive} \\ \frac{c}{b} \text{ left} & \text{if we see } bx + c \text{ and } \frac{c}{b} \text{ is negative} \end{cases} \]

6. Find the vertical shift: \(|d| \) up if \(d \) is positive or \(|d| \) down if \(d \) is negative.

7. Identify the five key points of the guide function:
 for sine: \(\left(\frac{c}{b}, d \right), \left(x_1 + \text{x-inc}, d + a \right), \left(x_2 + \text{x-inc}, d \right), \left(x_3 + \text{x-inc}, d - a \right), \left(x_4 + \text{x-inc}, d \right) \)
 for cosine: \(\left(\frac{c}{b}, d + a \right), \left(x_1 + \text{x-inc}, d \right), \left(x_2 + \text{x-inc}, d - a \right), \left(x_3 + \text{x-inc}, d \right), \left(x_4 + \text{x-inc}, d + a \right) \)

8. Plot the five key points of the guide function and connect them with a smooth, continuous, dotted curve, then extend the graph to two full periods.

9. Draw the given function using these guidelines:
 Anywhere the guide function crosses its horizontal axis (i.e., when \(y = d \)), the given function has a vertical asymptote.
 Anywhere the guide function has a minimum, the given function has a maximum and we draw a parabola shaped curve opening down. Anywhere the guide function has a maximum, the given function has a minimum, and we draw a parabola shaped curve opening up.

\textbf{Example 1: } \(y = 2 \csc (x - 3\pi) - 1 \)

1. Guide function: \(y = 2 \sin (x - 3\pi) - 1 \)

2. \(a = 2 \) \(b = 1 \) \(c = 3\pi = \frac{6\pi}{2} \) \(d = -1 \)

3. \(\text{amp of sine} = |2| = 2 \) There is no x-axis reflection.

4. \(\text{period} = \frac{2\pi}{1} = 2\pi \) \(\text{x-increment} = \frac{1}{4} \cdot 2\pi = \frac{2\pi}{4} = \frac{\pi}{2} \)

5. \(\text{phase shift} = 3\pi \text{ or } \frac{6\pi}{2} \text{ right} \quad x - 3\pi = 0 \rightarrow x = 3\pi = \frac{6\pi}{2} \)

6. \(\text{vertical shift} = 1 \text{ down} \)

7. 5 key points of the sine: \(\left(\frac{6\pi}{2}, -1 \right), \left(\frac{7\pi}{2}, 1 \right), \left(\frac{8\pi}{2}, -1 \right), \left(\frac{9\pi}{2}, -3 \right), \left(\frac{10\pi}{2}, -1 \right) \)
Example 2: \(y = -\frac{1}{4} \sec \left(x + \frac{\pi}{2}\right) + 3 \)

1. Guide function: \(y = -\frac{1}{4} \cos \left(x + \frac{\pi}{2}\right) + 3 \)

2. \(a = -\frac{1}{4} \quad b = 1 \quad c = -\frac{\pi}{2} \quad d = 3 = \frac{12}{4} \)

3. amp of cosine = \(\left| \frac{-1}{4} \right| = \frac{1}{4} \) There is an x-axis reflection.

4. period = \(\frac{2\pi}{1} = 2\pi \) \(x \)-increment = \(\frac{1}{4} \cdot 2\pi = \frac{2\pi}{4} = \frac{\pi}{2} \)

5. phase shift = \(\frac{\pi}{2} \) left \(x + \frac{\pi}{2} = 0 \rightarrow x = -\frac{\pi}{2} \)

6. vertical shift = 3 or \(\frac{12}{4} \) up

7. 5 key points of the cosine:
 \[\left(-\frac{\pi}{2}, \frac{11}{4} \right), \left(0, \frac{12}{4} \right), \left(\frac{\pi}{2}, \frac{13}{4} \right), \left(\frac{2\pi}{2}, \frac{12}{4} \right), \left(\frac{3\pi}{2}, \frac{11}{4} \right) \]